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Abstract

The metriod of expansion in powers of a thickness

"parameter 6 is employed to calculate supersonic, in-

4 viscid flow about symmetrical arrow-head wings lying en-

tirely within the tip Mach cone. In this method, the first-

order terms in C constitute the familiar, linearized

Prandtl-Glauert approximation. The method is one of itera-

tion, so that the X, the approximation always depends on the

( "/)th, etc.

Here the second approximation, i.e., the terms

in C and 62, are computed and plotted for a family

of arrow-head wings having various leading-edge angles and

"thicknesses, and flying at various Mach numbers. It is

necessary to use Lighthill's method to determine the strength

of the attached conical shock.
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Introduction

The problem to be considered is one in which dissipative

phenomena appear only within the shock wave. Since this entropy

change is of third order in thickness, it may be neglected in a

second~order theory. Hence the entire flow field my be considered

isentropic and irrotational, and the introduction of velocity

potential is justified.

The exact flow over a conical body in an ideal, uniform

supersonic flow • .ld is conical. By expairding the solution in

powers of a geometrical parameter E . one sees that each term of

the expansion must alse be conical.

As disturbances may not propagate upstream, the flow over an

"arrow head" wing is identical with that over an infinitely extended

body.

That the solution to the differential equations of motion

can be expanded in powers of thickness parameter can be justified by

assuming an expansion in terms of diminishing order of magnitude and

proceeding to satisfy the successive boundary conditions. For a flat

airfoil, the first-order solution is formed to be of order 4 (thickness

i parameter). This is dictated by the boundary condition on the normal
I-

velocity at the airfoil. On the airfoil, except at or near singular

points of the first order solution (e.g., leading edges), the same

boundary condition then requires that the next nontrivial approximation

WADC TR 52,277 1



*be of order 6 , and so on. This statement may be checked

against the boundary condition form:lated in Eq. (29). Thus, the

power expansion in 6 is the only expansion which will satisfy the

boundary conditions on the body. Recent work by Lighthill indicates

that, to second order, the power series expansion in 4 properly

describes conditions at the Mach cone as wello

Further, it is expected that the solution, to each order will

be analytic at some plane (e.g., a plane of symmetry) near the thin

body; thus, the value of each approximation on the body can be ex-

pressed as a power series in F. , the leading term being its value on

the plane of symmetry, say. As will be sho-wn later, one may then

formulate boundary conditions at the plane of symmetry to all orders.

Broderick and Lighthill have solved corresponding problems

of the supersonic flow about bodies of revolution and, in order to

satisfy boundary conditions at the surface, have found it necessary

to introduce nonregular terms involving the logarithm of the thickness

parameter. This is a consequence of the fact that the axis of the

body (corresponding to the plane of symmetry in the present case) is

a singularity of their solutions,

In the case of supersonic conical flows over slender bodies,

an attached conical shock wave occurs in the vicinity of the leading

Mach cone. In the linearized theory of such flows, it is customary

to assume a zero-strength shock located at Mach cone. Lighthill, has

pointed out that while the assumption of zero shock strength is valid

for the first (linearized) approximation, the true shock strength is

WADC TR 52-277 2



i is second order in disturbance velocities. He presents formulas that

provide a quantitative second-order description of the flow near the

shock wave in terms of results of the linearized solution. Lighthillts

results will be used here to provide boundary conditions at the Mach

cone*o

The pressure coefficient is given by

R A

Denoting the velocity vector by

_v/•r÷~u" r•E 4 2 Z ,'o, " (2)

where the unit vector ' lies in the streamwise direction, and

and app-ying the isentropic equations of motion, we have

(4)

C ýVC

(5)

Thus, for pressure coefficient, one needs in addition to all three

first-order cartesian velocity components, the second-order correction

to the streamwise velocity component as wello

WADC TR 52-277 3



Notation

Y, , • cartesian space coordinates

- conical radial coordinate

5 = Tschaplygin radial cooordinate

Cj = space, conical, and Tschaplygin angular ordinate

S - complex coordinates in the Tschaplygin plane

- pressure

P. = density

C = pressure coefficient

U -= free-stream velocity

A4 = Mach Number

- a constant based on free-stream Mach Number

•, V v = cartesian velocity components in the directions , , and

respectively

E.A - angles - See Fig. 2

- velocity potential

L a velocity of sound

-= ratio of specific heats

172' = the Laplacian operator

r, 6 -= geometrical quantitites in the Tschaplygin plane - see Fig. 3

= flow functions

A, A = constants

Subscripts:

Od signifies evaluation in the free stream

. signifies evaluation on the body

WADC TR 52-277 .4



S1 signifies evaluation on the plane of symmetry

,# signifies particular integral

c signifies complematary function.

The subscript notation for partial differentiation is used

where convenient.

Superscripts:

(m) denotes the order of approximation.

Primes denote ordinary differentiation.

W TIP M,,4C1. CON'E

ti-A&

I-- ,C5-
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PART I-THEORY*

A. The General Case

(1) Differential Equations for the Velocity Potential

For the scheme shown in Fig. 1, the isentropic equations of

motion are

(cV-X2) +~X~C 6

+- 4= -x- 1

It is assumed that

+ Ux !E . $O'/ + (8)

Introducing Eqs. (7) and (8) into Eq. (6) and collecting terms of

order £ and E72, respectively, one finds

?xx -ý 9Z21 • =

(9)

Eq. (9) is the equation of the linear-perturbation theory.

+• The solution f~r ýwillbe composed of a particular solution

of Eq, (10) and a complimentary solution satisfying the homogeneous

counterpart of Eqo (10), which solutions, taken together, satisfy the

boundary conditions appropriate to the particular case considered.
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(2) Transformations and Particular Integrals

A transformation introduced by Tschaplygin is applicable

to conical flows and changes the three-dimensional hyperbolic equations

for veloZ-ty components into two-dimensional Laplace's equations. The

transformation is introduced as follows:

17-z-. z.f
___Z (.U), d ,..1,_____

Applying this transformation to Eqs. (9) and (10), it is found

that

2 )

(12)
!7 A (z) 2 - +-

2 3 (13)
V * -,,- t).- - -'). L(

-- _s~ t/ 43k- -•)4 1.J.-.-. % (15)4. ~ ~-~ (/ -S )C.-cAW (14

where

+ +J1  Ew" (16)

and

JD +-/4 ,,v• Az-
-I:) (17)

The following transformation may now be introduced:

8(18)
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and one finds .hat

V = (19)

which makes it possible to deliIne the following functions:

/7tý+y• .J• -J (20)

and to write a particular integral for At. , after numerous integra-

tions by parts in Eq. (13), as follows:

(Ž*) .A 2  5 *• { ,,,.7 l/. )/ W.3tj7i"•'A - '2 S _"" D [<' L".

2 -- S

2(1-1/dY+,-J-•

(21)

Expressions for V.- and 'similar to the above can be obtained

from Eqs. (14) and (15).

It is clears this point that the solution given in Eq. (21)

will be infinite at the tip Mach cone (s 5) unless the derivative in

the first right-hand term vanishes there. This is an example of

-e singular behavior that concerned Lighthill in the investigation

already mentioned. In the cases considered in detail here, in which
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the body lies entirely within the tip Mach cone, this derivative

does in fact vanish, since the linearized theory leads to vanishing

perturbation velocities at this cone. Consequently, the second-

order solution is free of this particular difficulty, and one needs

Lighthill's technique only to establish the upstream boundary condition.

(3) The Boundary Condition on the Body

One prescribes simply that the flow through the body surface

vanish to the second order of approximation. It would be convenient

to satisfy this boundary condition at some mean plane, as is custom-

arily done in the linear theory. The assumption of analyticity of

solutions at this plane enables one to do this. The details of this

procedure will appear later in an illustrative example.

(4) The "Boundary Condition" at the Mach Cone

Since it is Wtended to deal herein with velocity components

rather than the potential, it is necessary to formulate boundary

conditions on these quantities at the Mach cone. As has already been

mentioned, the formulation of correct boundary conditions to be satis-

fied by the perturbation velocity components at the tip Mach cone is

based upon Lighthill's detailed analysis of the conditions near the

shock wave. It may be of value to review briefly the salient features

of his method.

The correct upstream "boundary conditions" are actually the

thock-wave equations, applied at the shock-wave location, which is

WADC TR 52-277 .10



upstream of the tip Mach cone and is therefore outside the region of

applicability of the method set forth above. To obviate this diffi-

culty, Lighthill introduces a transformation of coordinates from w •

to t , eo , which may be written in the form

-7 - f•L ÷• , *W)

where the successive functions r " (w) are to be determinea • the

calculation progresses. The method of approximations in 'uccessive

powers of E is then formulated in terms of the new independent

variables w, #a, The singularity of the differential equations is

thus shifted to the location R=I , instead of ' = The choice

of the functions r('J (u) is made, however, in such a way as to avoid

divergence of the method at • = I . It is then found that the shock

wave occurs for .• • I - i.e., in the region of convergence.

Lighthill next introduces the Rankine-Hugoniot shock-Wave

equations to connect the conical flow to the flow upstream of the

shock. This leads him to fictitious boundary values assumed by the

velocity components at ' = ! In particular, consider the perturba-

tion velocity potential

According to the shock-wave equations, this quantity is continuous

4cross the shock - iie., it has the value zero just behind the shock

in the present problem. Lighthill shows that the corresponding values

to be applied at /=# are

LAC) 52-277
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Furthermore, in any case where the body lies entirely within

the tip Mach cone, it is found that (t w) is identically zero.

This means that, at any point in the flow field, 7 and IR will

differ only to second order in e . Thus, away from the vicinity

of the shock waves the independent variable N in the functions fY1•,O)

may be directly replaced by q without introducing any error greater

than order 63 0

It follows from the fact that 'o (O) is zero . that

the differential equations satisfied by -f(/- 1,9, w) and -P')0'•,,)

are just the equations .equivalent to Eqs. (9) and (10) and, hence,

to Eqs. (12)-(15) (the only differences being those due to the

definition of the variables). Finally, then, to the order of

approximation contemplated in this paper, it will be correct to solve

Eqs. (12)-(15) and to apply at 7 / the boundary conditions (22).

From the definition of f () (R , ) and the relation (11), it

follows that these are equivalent to

Ss .(23)

WADC TR 52-277 12



(5) The Irrotationality Conditions

Applying the Tschaplygin transformation to the irrotationality

conditions

and evaluating them at the plane cO o , I one obtains the

following useful relations:

Z-3 ~ I / )z (25)

/4 P /

{ý9 Z-s (25)

I-,- 9•Uo=-. Cu]s .o(

(26)

(27)

(28)

WADC T 62-277 13"



B. Arrow-Head Inside Mach Cone

(1) Statement of Problem and Formilation of Boundary Conditions

Fig* 2 shows the configuration of the body - an"arrow-head"

at zero angles of attack and yaw with respect to a free stream of

velocity 9 and Mach Number E. * is the thickness parameter.

After certain geometrical maneuvers, the boundary condition

at the body for ' ' 0 may be written as

17 (29)

Assuming analyticity of solutions near the plane of symmetry, one

writes

Substituting expressions (8) and (30) into Eq. (29) and collecting

terms of like order in E,

t2  (31)

[~t2)J -~~( 7 - ~fc'.7(32)

Eqso (31) and (32) are applicable on the plane of symmetry within the

leading edges*

Utilizing the Tschaplygin transformation, noting that 5 /

represents the Mach cone, and defining e as the S-coordinate of

the leading edges, Eqs. (31) and (32) may be written as

WADC TR 52-277
14



y]o=' (c=o) s<lo5<

(33)

04

By symmetit7,

A0i1) is even in both Z and .

Sv-l is even in z , odd ing (36)

W is odd in Z, even in ;

On the circle S~l,

MOO f/ LJ(37)"{--j, 7 -_I-" "'/ '- -

The differential equations applicable in the Tschaplygin plane

are given by Eqs. (12)-(15). Use will be found for the irrotationality

conditions (24) through (28).

Fig. 3 represents the Tschaplygin plane, in which the problem

will be solved. Stated in its simplest terms, the plan of attack

will be as follows:

(a) Find V- • and ý "y which satisfy differential Eq. (12),

and the irrotationality conditions, subject to the boundary conditions

developed above.

WADC TR 52-277 -5



(b) Find the particular integral for A', using the

expression (21). To this will be added the complementary function

required to ensure satisfaction of the boundary conditions, thus

completing the solution for A .

(c) Using these results, apply Eqs. (4) and (5) to find the

pressure coefficient.

(2) Singularities

Certain difficulties are encountered in carrying out the

above procedure because of the presence of singularities in ,,A and V-

and, hence, in all components in the second approximation, at the

leading edges. This is cb. to the subsonic nature of the flow at

these edges and the consequent stagnation in the component of velocity

in the plane of symmetry and normal to the leading edge. A perturba-

tion theory always fails to represent stagnation conditions and provides

singularities in velocities instead.

One would expect that the singularities arising in this problem

at the leading edtes would be of the same types as those appearing

in the case of an infinite yawed wedge, when the angle of yaw is

sufficient to provide subsonic normal flow at the leading edge. This

normal component would contain the only singularities. Further,

the subsonic two-dimensional flow over a wedge will have the same type

of singularity as that of the infinite yawed wedge; the incompressible

(A' =6 ) two-dimensional flow over a wedge will afford the same

singularities as the compressible subsonic case9 inasmuch as the leading

edge in the latter case represents a stagnation point in Whose neighbor-

hood the local Mach Number is nearly zero.

WADC TR 52-277 16



Examination of the incompressible, two-dimensional flow over

a wedge shows singularities at the leading edge of the logarithmic

type in the first approximation and the square of the logarithm and

the logarithm in the second approximation. These singularities are

all integrable. These, then, are the singularities to be expected in

the "arrow-head" case.

Admission of such singularities raises the question of

uniqueness. It is known that a potential problem has a unique

solution when suitable boundary conditions are prescribed on a

closed contour, provided the solution is to be regular everywhere

inaide. If singularities are admitted, a4 ambiguity may be expected -

i.e., certain harmonic functions having singularities may be intro-

duced without disturbing the boundary conditions. One therefore

inquires what harmonic functions havink singularities of the type 4/r-A I

and/or -- )/-ei on the axis of symmetry may be added to the

regular solution for u obr ti 2satisfying the appropriate boundary

conditions, without disturbing these boundary conditions. Thus, in

accordance with Eqs. (24), (36), and (37), it is required that such

a singular function have zero angular derivative on the axis of

symmetry, be even in both I and Z, and vanish on the unit circle. It

may be shown that the only singular function meeting these requirements

is the following:

(38)

WADC TR 52-277 17



Similar reasoning leads to the following ambiguous term for v '"or v-

The constants <) and ACŽhave superscripts indicating the order

of approximation involved.

Since wf"nd ýAr 2 have boundary conditions on value, they can

have no ambiguity of this type. Therefore, knowing WJ")and , one

may fid , ,, k, and /k< . Eqs. (25) and (26) are con-

venient for this purpose.

It appears that the lack of uniqueness discussed above arises

because of the abandonment of the velocity potential in order to take

advantage of the simplicity afforded by the Tschaplygin transformation.

(3) First-Order Solution

(a) Solution for W "-- The differential equation is given in

Eq. (12), and the boundary conditions are given in Eqs. (33), (35), and

(37)o By analogy with incompressible fluid theory, the solution may be

written down immediately, using the stream function for the incomIressible

source:

,-") - (" ./r)(,•J , _ 2 t -)

(b) Solution for • )-The differential equation is given in

Eq. (12) above. The boundary conditions qre those given in Eqs. (25),

(36), and (37), and from Eq. (24):

IADC. TR 52-277 18



It is plain that the solution analytic inside the unit circle is

identically zero, leaving only the constant #(•,"to be found. Applying

Eq. (25) to Eqs. (38) and (40), and, for convenience, evaluating

terms near the leading edge, one may immec ately write

4 ~ 4 jI) -(42)

(c) Solution for •'U P a procedure similar to the one employed

to find W'4 it is found that

(d) Information Obtained from the Above Solutions. - Expanding (40),

one finds that
- ( 4 4)

and from Eqo (42) is obtained

• 7]'jTr +x (45)

Eq. (45) may be substituted into the results of Lighthill for the

strength and location of the shock wave.

For use in finding t', one puts u'), _ and F "-)into

complex form to conform to the expressions (204 above.

WADC-TR- 52-277



(4) Second-Order Solution

In philosophy, the solution for 4t is obtained in the same

way as was zc 'in the preceding paragraph. In detail, the procedure

is as follows: One may write
(t) 12)

.+ 4

Z)) (46)

where tý is obtained from Eq. (21), '4 Jis obtained from a similar

expression and s.a nd •atisf Laplace's equation in the Tschaplygin

plane.

(a) Find ý ; note that the functions obtained from the

integrations indicated in Eq. (21) may be complex. tkpA may be found

in real form by adding to these complex functions any convenient

functions of S or. alone.

(b) Find l•such that u , satisfies the boundary

conditions (24), (36), and (37) and has no singularities of order

higher than 1 s 5- elj) . Expression (38) is to be included

(c) Find I4r C 0)

(d) Find W" such that - W satisfies the boundary

conditions (34), (35), and (36) and has no singularities of order

higher than ( 13 /•- I// . Note that no boundary condition on i-V-

at the unit circle is applied.

(e) Apply Eq. (26) to find /\) This step is simplified

by considering only those terms that are singular at the leading

edge. The equation will contain terms singular at 5 = , and one

ADC ,TR, 521-277 20



may require the equation to be satisfied upon arbitrarily close ap-

proach to the point . L • A32 terms nonsingular at this point

may then be dropped, and all nonsingular factors in singular terms

may be evaluated at 5 = * , The term involving the unknown K ,7

has a derivative with a simple-pole type of singularity. Thus, one

needs only to formulate Eq. (26) for terms having simple poles in

derivative. Finding k7'in this way makes it possible to ignore

any boundary condition on W-t.Zat the unit circle, since its

application would result in a regular function that would make no

contribution to the determination of I c.

This procedure has been carried out and formulas have been

obtained from which computations can be madw (Part II),

YWC TR ,52-277 21



PART II COMUTATION AND RESULTS

A* Computation and Results

In the cases computed, the following values are used:

U~f

I = ,.1, o.3. o.78.

-!P 6° Jo°

Introducing the notations

2-i z Z ,3 C
2 /F-2-• z/ - I -i - i -/

Z = ••r':2 + / -/ -/ +'

-Z Z

A, = - / A.-• /= .j"•A , = _•o•. • = , •., ,. /-L- • ,, 1 4 ,4 )
-3--

/+6 =- E,2- rz_ = A?

A _.1 - 37. A6 = '--•z o:,-•.,,,• ,,
/ --

232PD7 2ý 3a [ (/. z
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and further putting htc in the form

the procedure of computation can be sumarized as follows:

a) Evaluate (91, ). for a series of values of s according

to the formula (p. 144j. Ref. 2):

+ /',• -z ,_-- • (A 1,-<.-L c,)+- # -• ÷.7.-J (

A [,z gr•. + , ( ,o÷,P IL IL )9,.r ,,•I~ rz

+ 2,,, rL ,., + A' - 4crvJJ4]

• , 4-• • - A/{.i,,,)Jf'g,-, -i .,./t )J.

+ 4Zr•2  - .J / G .A.4,,, 3 +Lll - Za33

[ n - tI],A()4' , ,•4- , ,y - r , -•2 ,3
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b) Tabulate for series of values of W& from the

formula ( p. 148, Ref. 2):

'e ,[ r-ij f Z]-,v 1- J-i 0* 312SCr

+ 4•,9[1 7--,•,,,4-• .,,- + 7

-4 EJ' L,,4kJ ,,-

k 6 A A 7". ,A"•- - 7• -1,•7

(A3 k-/ -b E4 2.E,

Then since 0,6A-., is even about both vertical and horizontal axes,

Theno may be expressed in a Fourier series

3f't7 9 "c A7 CA

where - = + .
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'?• is evaluated by graphical integration using a planimeter.

Thus the regular harmonic function associated with boundary value (1)

is

/

where -c /

(•) a is then evaluated at the series of values S picked above.

v) A Fourier analysis of is made for Lighthill's result

on Mach cone (Appendix), which gives on w = o

(?7) 0 = -ZA. + ~

where A i n is obtained from formulas furnished in Appendix.

d) Results of a), b), and c) above are added to give {q(t!)

e) (andand du)are computed from (42), (43).
If) (zj

f) C1, and Cp are computed from (W), (5).

In performing the calculations, resort has been made to

various geometric relations furnished by Appendix A, Ref. 2.

The computation procedure is illustrated by tables for the

case of A4,=, T. e• = 3 * The computed results for , LA

c/'J, C%•)for various Mach numbers and values of A are plotted

in Curve 1 to Curve 20. Note that different scales have been

adopted in plotting the curves. For 44-- =/, plots of "and CP

at 5= o against L are shown in Fig. 21. For % I,

plots of L and cp at s o against /4,-, are given in Fig. 22. In

both cases 2 ,= 6 * is used.
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B. Concluding Remarks

The theory and computation formulas adopted in the present

report are mainly taken from Ref. 2, by Dr. F. K. Moore. Those not

to be found there are given in the Appendix to the present report.

The boundary condition on Mach cone given in Refo 2 is incorrect.

Prof. We R. Sears pointed out that Lighthillts result in Ref. 3 should

be introduced. Ref. 1 is the corrected version.

The computations have largely been carried out by Mrs. Anne

Kane.

The effect of f on the difference between the fi-rst and

second approximation, as expected, grows with E •.

The reason that the discrepancy between first and second

approximation changes radically with decreasing planform angle A

is that the parameter E is not, in fact, an ideal thickness parameter.

A little reflection shows that cE' = C A might be a better

choide. Indeed, the boundary value on the singular line inside the

unit circle of the conical plane is given by E 'rather than I . Thus

even fTr such small values of & as might seem evidently to meet the

requirement of linearization, the value of c- can still cause break-

down, provided /\ be sufficiently small. It is suggested therefore

that the present second approximation might be improved by expanding,

instead, in powers of L'.

It might also be of interest to note that, so far as comput-on

results indicate, the present theory predicts a particular value of

( (• o, 3) , for which the first-order solution gives good approxima-

tion irrespective of Mach number. A further investigation to see

whether this is a coincidence is also suggested.
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APPENDIX

In order to utilize Lighthill's results it should be noted

that in his discussion, physical polar coordinates (r, W) were used,

while in the present report, conical coordinates (.sw)are used. The

problem can be stated in following manner. In the differential equation

v 2 1 HkV-- H cr,.w) (1)

a solution of the form

(-) 9 (2)

is sought, where
Sz 993 =Z 0 (3)

and satisfies the boundary conditions

0 (5)

C (•) is obtained from Lighthill's result on the study of conical

shock. Thus, since is analytic inside the unit circle ,

it takes on the form

03 
(6)

Now using Lighthillts notation, Ref. 3, we have

- (7)
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So 2- (7 1+ eO
?,< k7/ ' U" over r=s=/ (9)

BWt as can easily be shown (Ref. 3)

,4 (co) = (10)R 2.

4-t (12)

f -r7

L,3 r -,.,0,-

i~. C7(ci) = A -(o-) = 7 '

and finally we arrive at

(7= - ( -- 6)

~~~C (/ ."l -- e=

/L s---3

7'

WADC (17)
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